Surfaces visualization

This tutorial illustrates how to visualize surfaces using Atlas package.
To visualize a surface you can use the Visualize function with the following syntax: Visualize[{y1, y2,..., yn}] where {y1, y2,..., yn} is a list with the surface equations.
If you define the surface equations as a variable like that eqs = {y1, y2,..., yn} then you have to use the following syntax: Visualize[Evaluate[eqs]] because the Visualize function has attribute HoldAll.
You can use any option for native Mathematica plot functions with the Visualize function. For instance: PlotLabel, ViewPoint etc.

Examples:

Visualize[{expr1, expr2,..., exprn}]generates visual presentations of m-dimentional mapping, where m is number of indeterminates in {expr1, expr2,..., exprn}

Necessary functions.

Loading Atlas package
In[7]:=
Click for copyable input

2-dimensional surfaces

Torus

Visualization of Torus surface
In[8]:=
Click for copyable input
Out[8]=
Visualization with VisualDimensions→{2,2} - projections
In[9]:=
Click for copyable input
Out[9]=

Moebius strip

Moebius strip visualization
In[10]:=
Click for copyable input
Out[10]=
Visualization with VisualDimensions→{2,2} - projections
In[11]:=
Click for copyable input
Out[11]=

Make Manipulate control

Visualization of Catenoid-Helicoid with Manipulate
In[12]:=
Click for copyable input
Out[12]=
Visualization of projections of Catenoid-Helicoid with Manipulate
In[13]:=
Click for copyable input
Out[13]=