Surface geometry

This notebook illustrates how to use the Atlas package to solve problems in elementary differential geometry. As an example we find the geometry of the following surfaces: torus, helicoid and abstract revolution surface.

What we do?

  • We assume that the geometry is induced by the corresponding embedding of a surface into the flat Euclidian 3-dimensional space.
  • Thus we construct the corresponding embedding and calculate the following quantities: first fundamental form (metric tensor field), second fundamental form and field of mean curvature vectors.
    • Besides that we calculate the connection, curvature, curvature tensor field (Riemann tensor field), Ricci tensor field and Ricci scalar function which is proportional to scalar curvature.
    Connection[id]id-variable-connection identifier.
    Coframe[id1expr1,id2expr2,...idnexprn]id - identifier for indexed variable - the coframe 1-forms, n - dimension of working manifold (a variable or integer), idiexpri - rule where idi is indexed variable - coframe 1-form and expri is decomposition of the 1-form on exact 1-forms.
    Invariants[f] f - mapping identifier.

    Necessary functions.

Solution:

Load atlas package:
In[7]:=
Click for copyable input

Description of the total space R3

First of all we have to describe the space we are working in. The space is 3-dimensional Euclidean (flat) space. To define the space we declare domain, forms, vectors, coframe, frame, flat metric and calculate connection (it is equal to zero of course).
Define Euclidean space as a manifold:
In[8]:=
Click for copyable input
Out[8]=
Declare 1-forms for the space coframe:
In[9]:=
Click for copyable input
Out[9]=
Declare vectors for the space frame:
In[10]:=
Click for copyable input
Out[10]=
Declare coframe on the space:
In[11]:=
Click for copyable input
Out[11]=
Declare frame on the space:
In[12]:=
Click for copyable input
Out[12]=
Declare flat metric on the space:
In[13]:=
Click for copyable input
Out[13]=
Calculate connection of the metric:
In[14]:=
Click for copyable input
Out[14]=

Torus

Define the torus as a manifold:
In[15]:=
Click for copyable input
Out[15]=
Declare constants a, b, c:
In[16]:=
Click for copyable input
Out[16]=
Declare 1-forms for torus coframe:
In[17]:=
Click for copyable input
Out[17]=
Declare vectors for torus frame:
In[18]:=
Click for copyable input
Out[18]=
Declare coframe on the torus:
In[19]:=
Click for copyable input
Out[19]=
Declare frame of the surface:
In[20]:=
Click for copyable input
Out[20]=
Declare mapping of the torus into R2:
In[21]:=
Click for copyable input
Out[21]=
Visualize the mapping:
In[22]:=
Click for copyable input
Out[22]=
Calculate metric on the torus using Pullback- operator:
In[23]:=
Click for copyable input
Out[23]=
Calculate invariants of the mapping:
In[24]:=
Click for copyable input
Out[24]=
Extract second fundamental form as a table:
In[25]:=
Click for copyable input
Out[25]=
Construct second fundamental form as corresponding tensor field (CircleTimes - is tensor product operator):
In[26]:=
Click for copyable input
Out[26]=
Extract mean curvature vector:
In[27]:=
Click for copyable input
Out[27]=
Calculate mean curvature:
In[28]:=
Click for copyable input
Out[28]=
Use differential operator Pushforward to express tangent vectors on the torus Wi by total space frame vectors j:
In[29]:=
Click for copyable input
Out[29]=
In[30]:=
Click for copyable input
Out[30]=
Verify that mean curvature vector field is normal to the tangent space of the torus:
In[31]:=
Click for copyable input
Out[31]=
In[32]:=
Click for copyable input
Out[32]=
Calculate connection of the embedding:
In[33]:=
Click for copyable input
Out[33]=
Calculate curvature of the embedding:
In[34]:=
Click for copyable input
Out[34]=
Calculate Riemann tensor field:
In[35]:=
Click for copyable input
Out[35]=
Calculate Ricci tensor field:
In[36]:=
Click for copyable input
Out[36]=
Calculate Ricci scalar curvature:
In[37]:=
Click for copyable input
Out[37]=

Helicoid

Define the surface as a manifold:
In[38]:=
Click for copyable input
Out[38]=
Declare 1-form for surface coframe:
In[39]:=
Click for copyable input
Out[39]=
Declare vectors for surface frame:
In[40]:=
Click for copyable input
Out[40]=
Declare coframe on the surface:
In[41]:=
Click for copyable input
Out[41]=
Declare frame of the surface:
In[42]:=
Click for copyable input
Out[42]=
Declare mapping of the surface into R3:
In[43]:=
Click for copyable input
Out[43]=
Visualize the mapping:
In[44]:=
Click for copyable input
Out[44]=
One can also calculate metric induced on the surface by the mapping:
In[45]:=
Click for copyable input
Out[45]=
Calculate invariants of the mapping:
In[46]:=
Click for copyable input
Out[46]=
It is well known that helicoid is a minimal surface. Thus nothing surprising about zero mean curvature vector field. Calculate connection of the embedding:
In[47]:=
Click for copyable input
Out[47]=
Calculate curvature of the embedding:
In[48]:=
Click for copyable input
Out[48]=
Calculate Riemann tensor field:
In[49]:=
Click for copyable input
Out[49]=
Calculate Ricci tensor field:
In[50]:=
Click for copyable input
Out[50]=
Calculate Ricci scalar curvature:
In[51]:=
Click for copyable input
Out[51]=

Abstract revolution surface

Define the surface as a manifold:
In[52]:=
Click for copyable input
Out[52]=
Declare functions:
In[53]:=
Click for copyable input
Out[53]=
Declare 1-form for surface coframe:
In[54]:=
Click for copyable input
Out[54]=
Declare vectors for surface frame:
In[55]:=
Click for copyable input
Out[55]=
Declare coframe on the surface:
In[56]:=
Click for copyable input
Out[56]=
Declare frame of the surface:
In[57]:=
Click for copyable input
Out[57]=
Declare mapping of the surface into R3:
In[58]:=
Click for copyable input
Out[58]=
Visualize the mapping:
In[59]:=
Click for copyable input
Out[59]=
One can also calculate metric induced on the surface by the mapping:
In[60]:=
Click for copyable input
Out[60]=
Calculate invariants of the mapping:
In[61]:=
Click for copyable input
Out[61]=
Calculate connection of the embedding:
In[62]:=
Click for copyable input
Out[62]=
Calculate curvature of the embedding:
In[63]:=
Click for copyable input
Out[63]=
Calculate Riemann tensor field:
In[64]:=
Click for copyable input
Out[64]=
Calculate Ricci tensor field:
In[65]:=
Click for copyable input
Out[65]=
Calculate Ricci scalar curvature:
In[66]:=
Click for copyable input
Out[66]=
In[67]:=
Click for copyable input