Curves in R3

Curvature and torsion of space curves

What we do?

Find curvature, torsion, tangent, binormal and principal normal vectors of the following space curve:

Solution:

Domain[manifold]manifold - string - a manifold name or a name of a manifold domain.
Metric[id→expr]id - variable - metric identifier, expr - expression - metric declaration.
Connection[id]id - variable - connection identifier.

Necessary functions.

Load the Atlas package:
In[7]:=
Click for copyable input

Space

First of all we have to describe the space we are working in. The space is 3-dimensional Euclidean (flat) space. To define the space we declare domain, forms, vectors, coframe, frame, flat metric and calculate connection (it is equal to zero of course).
Define Euclidean space as a manifold:
In[8]:=
Click for copyable input
Out[8]=
Declare 1-forms for the space coframe:
In[9]:=
Click for copyable input
Out[9]=
Declare vectors for the space frame:
In[10]:=
Click for copyable input
Out[10]=
Declare coframe on the space:
In[11]:=
Click for copyable input
Out[11]=
Declare frame on the space:
In[12]:=
Click for copyable input
Out[12]=
Declare flat metric on the space:
In[13]:=
Click for copyable input
Out[13]=
Calculate connection of the metric:
In[14]:=
Click for copyable input
Out[14]=
Now the working space is defined completely and we can start to solve the problem.
Just for right simplification:
In[15]:=
Click for copyable input

Curve

Define the curve as a manifold:
In[16]:=
Click for copyable input
Out[16]=
Declare constants a and b:
In[17]:=
Click for copyable input
Out[17]=
Declare 1-form for curve's coframe:
In[18]:=
Click for copyable input
Out[18]=
Declare vectors for curve's frame:
In[19]:=
Click for copyable input
Out[19]=
Declare coframe on the curve:
In[20]:=
Click for copyable input
Out[20]=
Declare frame of the curve:
In[21]:=
Click for copyable input
Out[21]=
Declare mapping of the curve into R3:
In[22]:=
Click for copyable input
Out[22]=
Visualize the mapping:
In[23]:=
Click for copyable input
Out[23]=
One can also calculate metric induced on the curve by the mapping.
In[24]:=
Click for copyable input
Out[24]=
Calculate invariants of the mapping:
In[25]:=
Click for copyable input
Out[25]=
Extract tangent normalized vector field:
In[26]:=
Click for copyable input
Out[26]=
Extract normal normalized vector field:
In[27]:=
Click for copyable input
Out[27]=
Extract binormal normalized vector field:
In[28]:=
Click for copyable input
Out[28]=
Extract curvature of the curve:
In[29]:=
Click for copyable input
Out[29]=
Extract torsion of the curve:
In[30]:=
Click for copyable input
Out[30]=