Curves in R2

Curvature and moving frame of epicycloid

What we do?

Find curvature and moving frame for epicycloid:

Solution:

Domain[manifold]manifold - string - a manifold name or a name of a manifold domain.
Metric[id→expr]id - variable - metric identifier, expr - expression - metric declaration.
Connection[id]id - variable - connection identifier.

Necessary functions.

Load the Atlas package:
In[7]:=
Click for copyable input
Just for right simplification:
In[8]:=
Click for copyable input

Plane

First of all we have to discribe the space we are working in. The space is 2-dimensional Eucledean (flat) space i.e. a plane. To define the space we declare domain, forms, vectors, coframe, frame, flat metric and calculate connection (it is equal to zero of course).
Declare domain:
In[9]:=
Click for copyable input
Out[9]=
Declare some forms:
In[10]:=
Click for copyable input
Out[10]=
Declare some vectors:
In[11]:=
Click for copyable input
Out[11]=
Declare coframe:
In[12]:=
Click for copyable input
Out[12]=
Declare frame:
In[13]:=
Click for copyable input
Out[13]=
Declare a flat metric:
In[14]:=
Click for copyable input
Out[14]=
Calculate the connection of the metric:
In[15]:=
Click for copyable input
Out[15]=
Now the working space is defined completely and we can start to solve the problem.

Epicycloid

Define the curve as a manifold:
In[16]:=
Click for copyable input
Out[16]=
Declare constants a and m:
In[17]:=
Click for copyable input
Out[17]=
Declare 1-form for curve's coframe:
In[18]:=
Click for copyable input
Out[18]=
Declare vectors for curve's frame:
In[19]:=
Click for copyable input
Out[19]=
Declare coframe on the curve:
In[20]:=
Click for copyable input
Out[20]=
Declare frame of the curve:
In[21]:=
Click for copyable input
Out[21]=
Declare mapping of the curve into R2:
In[22]:=
Click for copyable input
Out[22]=
Visualize the mapping:
In[23]:=
Click for copyable input
Out[23]=
Calculate metric on the curve using Pullback- operator:
In[24]:=
Click for copyable input
Out[24]=
Calculate invariants of the mapping:
In[25]:=
Click for copyable input
Out[25]=

Result

The curve curvature:
In[26]:=
Click for copyable input
Out[26]=
The curve moving frame:
In[27]:=
Click for copyable input
Out[27]=
In[28]:=
Click for copyable input
Out[28]=
Check the "orthonormality":
In[29]:=
Click for copyable input
Out[29]=