Coordinate system changing

Bipolar cylindrical coordinate system on 3-space

What we do?

Find metric, connection and Laplace operator on 3-space in bipolar cylindrical coordinate system:
x = a*sinh(v)/(cosh(v)-cos(u))
y = a*sin(u)/(cosh(v)-cos(u))
z = w

Solution:

Domain[manifold]manifold - string - a manifold name or a name of a manifold domain.
Metric[id→expr]id - variable - metric identifier, expr - expression - metric declaration.
Connection[id]id - variable - connection identifier.

Necessary functions.

Load the Atlas package:
In[35]:=
Click for copyable input

Space

First of all we have to describe the space we are working in. The space is 3-dimensional Euclidean (flat) space. To define the space we declare domain, forms, vectors, coframe, frame, flat metric and calculate connection (it is equal to zero of course).
Declare domain:
In[36]:=
Click for copyable input
Out[36]=
Declare some forms:
In[37]:=
Click for copyable input
Out[37]=
Declare some vectors:
In[38]:=
Click for copyable input
Out[38]=
Declare coframe:
In[39]:=
Click for copyable input
Out[39]=
Declare frame:
In[40]:=
Click for copyable input
Out[40]=
Declare a flat metric:
In[41]:=
Click for copyable input
Out[41]=
Calculate the connection of the metric:
In[42]:=
Click for copyable input
Out[42]=
Now the working space is defined completely and we can start to solve the problem.

Bipolar cylindrical

Define new domain:
In[43]:=
Click for copyable input
Out[43]=
Declare 1-form for the domain coframe:
In[44]:=
Click for copyable input
Out[44]=
Declare vectors for the domain frame:
In[45]:=
Click for copyable input
Out[45]=
Declare coframe on the domain:
In[46]:=
Click for copyable input
Out[46]=
Declare frame of the domain:
In[47]:=
Click for copyable input
Out[47]=
Declare mapping of the domain into R3:
In[48]:=
Click for copyable input
Out[48]=
Visualize the mapping:
In[49]:=
Click for copyable input
Out[49]=
Now we can calculate metric induced on the domain by the mapping.
In[50]:=
Click for copyable input
Out[50]=
Calculate connection:
In[51]:=
Click for copyable input
Out[51]=
In[52]:=
Click for copyable input
Out[52]//MatrixForm=
In[53]:=
Click for copyable input
Out[53]=
To calculate Laplace operator one can use grad and div operators.
In[54]:=
Click for copyable input
Out[54]=