Atlas 2 Logo

In[1]:=
Click for copyable input
This notebook illustrates how to use the Atlas package to solve problems in elementary differential geometry. As an example we find the geometry of the Atlas 2 Logo surface.

What we do?

  • We assume that the geometry is induced by the corresponding embedding of a surface into the flat Euclidian 3-dimensional space.
    • We calculate the connection, curvature, curvature tensor field (Riemann tensor field), Ricci tensor field and Ricci scalar function which is proportional to scalar curvature.
    Load atlas package:
    In[1]:=
    Click for copyable input
    Atlas 2 Logo surface:
    In[1]:=
    Click for copyable input
    In[2]:=
    Click for copyable input
    In[3]:=
    Click for copyable input
    Out[3]=

Solution:

Forms[f1n,f2k,...,fip]fip -rules where fi - form identifier and p is a variable or an integer - the form's degree.
Vectors[v1,v2,...,vi,...,vn]vi - vector identivier.
Coframe[id1expr1,id2expr2,...idnexprn]id - identifier for indexed variable - the coframe 1-forms. n - dimension of working manifold (a variable or integer). idiexpri - equation where idi is indexed variable - coframe 1-form and expri is decomposition of the 1-form on exact 1-forms.
Metric[idexpr]id - variable - metric identifier. expr - expression - metric declaration.
Connection[id]id - variable - connection identifier.

Necessary functions.

Description of the total space R3

First of all we have to describe the space we are working in. The space is 3-dimensional Euclidean (flat) space. To define the space we declare domain, forms, vectors, coframe, frame, flat metric and calculate connection (it is equal to zero of course).
Define Euclidean space as a manifold:
In[4]:=
Click for copyable input
Out[4]=
Declare 1-forms for the space coframe:
In[5]:=
Click for copyable input
Out[5]=
Declare vectors for the space frame:
In[6]:=
Click for copyable input
Out[6]=
Declare coframe on the space:
Declare frame on the space:
In[8]:=
Click for copyable input
Out[8]=
Declare flat metric on the space:
In[9]:=
Click for copyable input
Out[9]=
Calculate connection of the metric:
In[10]:=
Click for copyable input
Out[10]=
Curvature[id]id - variable - curvature identifier.
Riemann[id]id - variable - corresponding identifier.
Ricci[id]id - variable - corresponding identifier.
RicciScalar[id]id - variable - corresponding identifier.

Necessary functions.

Atlas 2 Logo

Define the Atlas 2 Logo as a manifold:
In[11]:=
Click for copyable input
Out[11]=
Declare constants a, b, c, d:
In[12]:=
Click for copyable input
Out[12]=
Declare functions:
In[13]:=
Click for copyable input
Out[13]=
Declare 1-forms for logo coframe:
In[14]:=
Click for copyable input
Out[14]=
Declare vectors for logo frame:
In[15]:=
Click for copyable input
Out[15]=
Declare coframe on the logo:
Declare frame of the surface:
In[17]:=
Click for copyable input
Out[17]=
Declare mapping of the Atlas 2 Logo into R2:
Calculate metric on the logo using Pullback- operator:
In[19]:=
Click for copyable input
Out[19]=
Calculate connection of the embedding:
In[20]:=
Click for copyable input
Out[20]=
Calculate curvature of the embedding:
In[21]:=
Click for copyable input
Out[21]=
Calculate Riemann tensor field:
In[22]:=
Click for copyable input
Out[22]=
Calculate Ricci tensor field:
In[23]:=
Click for copyable input
Calculate Ricci scalar curvature:
In[24]:=
Click for copyable input