Curves in R2

Curvature and moving frame of abstract parametric curve in polar coordinates

What we do?

  • Find curvature of the abstract plane curve defined by parametric equation: r = ()

Solution:

Connection[id] id - variable - connection identifier.
Mapping[f,m,n,y1f1(x1,x2...xm),y2f2(x1,x2...xm),...,
ynfn(x1,x2...xm)]
f - variable - the mapping identifier i.e. f : m n, m - variable - first domain identifier, n - variable - second domain identifier.
Invariants[f]f - mapping identifier.
Coframe[id1expr1,id2expr2,...idnexprn]id - identifier for indexed variable - the coframe 1-forms, n - dimension of working manifold (a variable or integer), idi
expri - rules where idi is indexed variable - coframe 1-form and expri is decomposition of the 1-form on exact 1-forms.

Necessary functions.

Load the Atlas package:
In[1]:=
Click for copyable input

Plane (cartesian coordinate system)

First of all we have to discribe the space we are working in. The space is 2-dimensional Eucledean (flat) space i.e. a plane. To define the space we declare domain, forms, vectors, coframe, frame, flat metric and calculate connection (it is equal to zero of course).
Declare domain:
In[2]:=
Click for copyable input
Out[2]=
Declare some forms:
In[3]:=
Click for copyable input
Out[3]=
Declare some vectors:
In[4]:=
Click for copyable input
Out[4]=
Declare coframe:
In[5]:=
Click for copyable input
Out[5]=
Declare frame:
In[6]:=
Click for copyable input
Out[6]=
Declare a flat metric:
In[7]:=
Click for copyable input
Out[7]=
Calculate the connection of the metric:
In[8]:=
Click for copyable input
Out[8]=
Now the working space is defined completely and we can start to solve the problem.
Just for right simplification:
In[9]:=
Click for copyable input

Plane (polar coordinate system)

To solve the problem we have to change coordinate system on manifold R2 from Cartesian to polar. We can do it easily just by definition of another Eucledean domain.
In[10]:=
Click for copyable input
Out[10]=
In[11]:=
Click for copyable input
Out[11]=
In[12]:=
Click for copyable input
Out[12]=
In[13]:=
Click for copyable input
Out[13]=
In[14]:=
Click for copyable input
Out[14]=
In[15]:=
Click for copyable input
Out[15]=
Visualize the mapping:
In[16]:=
Click for copyable input
Out[16]=
Let us see mapping attributes:
In[17]:=
Click for copyable input
Out[17]//TableForm=
Now we can calculate metric induced by the mapping:
In[18]:=
Click for copyable input
Out[18]=
Calculation of the corresponding connection:
In[19]:=
Click for copyable input
Out[19]=
Now we can continue.

Abstract curve

Define the curve as a manifold:
In[20]:=
Click for copyable input
Out[20]=
Declare function = (t):
In[21]:=
Click for copyable input
Out[21]=
Declare 1-form for curve's coframe:
In[22]:=
Click for copyable input
Out[22]=
Declare vectors for curve's frame:
In[23]:=
Click for copyable input
Out[23]=
Declare coframe on the curve:
In[24]:=
Click for copyable input
Out[24]=
Declare frame of the curve:
In[25]:=
Click for copyable input
Out[25]=
Declare vectors for curve's frame:
In[26]:=
Click for copyable input
Out[26]=
Declare mapping of the curve into E2:
In[27]:=
Click for copyable input
Out[27]=
Let us see the domain attributes:
In[28]:=
Click for copyable input
Out[28]//TableForm=
Calculate metric on the curve using Pullback- operator:
In[29]:=
Click for copyable input
Out[29]=
Calculate invariants of the mapping:
In[30]:=
Click for copyable input
Out[30]=

Result

The curve curvature:
In[31]:=
Click for copyable input
Out[31]=
The curve moving frame:
In[32]:=
Click for copyable input
Out[32]=
In[33]:=
Click for copyable input
Out[33]=
Check the "orthonormality":
In[34]:=
Click for copyable input
Out[34]=