Numerical examples of the AnalyticalApproximations`LdeApprox` package

Copyright © 2003-20011DigiArea, Inc.. All rights reserved.

This notebook illustrates AnalyticalApproximations`LdeApprox` package capability of doing numerical polynomial approximation of an LDE solution.

This loads the package.

In[94]:=

numerical_1.gif

Example 1

Initial value problem.

In[95]:=

numerical_2.gif

Out[95]=

numerical_3.gif

Finding polynomial approximation for solution of the IVP.

In[96]:=

numerical_4.gif

Out[96]=

numerical_5.gif

Using Mathematica function DSolve tot find exact solution of the IVP.

In[97]:=

numerical_6.gif

Out[97]=

numerical_7.gif

Comparing exact and approximate results using Mathematica function Plot.

In[98]:=

numerical_8.gif

Out[98]=

numerical_9.gif

Example 2

Initial value problem.

In[99]:=

numerical_10.gif

Out[99]=

numerical_11.gif

Finding polynomial approximation for solution of the IVP.

In[100]:=

numerical_12.gif

Out[100]=

numerical_13.gif

Using Mathematica function DSolve tot find exact solution of the IVP.

In[101]:=

numerical_14.gif

Out[101]=

numerical_15.gif

Comparing exact and approximate results using Mathematica function Plot.

In[102]:=

numerical_16.gif

Out[102]=

numerical_17.gif

Example 3

Initial value problem.

In[103]:=

numerical_18.gif

Out[103]=

numerical_19.gif

Finding polynomial approximation for solution of the BVP.

In[104]:=

numerical_20.gif

Out[104]=

numerical_21.gif

Using Mathematica function DSolve tot find exact solution of the BVP.

In[105]:=

numerical_22.gif

Out[105]=

numerical_23.gif

Comparing exact and approximate results using Mathematica function Plot.

In[106]:=

numerical_24.gif

Out[106]=

numerical_25.gif

Example 4

Boundary value problem.

In[107]:=

numerical_26.gif

Out[107]=

numerical_27.gif

Finding polynomial approximation for solution of the BVP.

In[108]:=

numerical_28.gif

numerical_29.gif

Out[108]=

numerical_30.gif

Using Mathematica function DSolve tot find exact solution of the BVP.

In[109]:=

numerical_31.gif

numerical_32.gif

Out[109]=

numerical_33.gif

Comparing exact and approximate results using Mathematica function Plot.

In[110]:=

numerical_34.gif

Out[110]=

numerical_35.gif

Example 5

Initial value problem.

In[111]:=

numerical_36.gif

Out[111]=

numerical_37.gif

Finding polynomial approximation for solution of the IVP.

In[112]:=

numerical_38.gif

Out[112]=

numerical_39.gif

Exact solution of the IVP.

In[113]:=

numerical_40.gif

Out[113]=

numerical_41.gif

Comparing exact and approximate results using Mathematica function Plot.

In[114]:=

numerical_42.gif

Out[114]=

numerical_43.gif

Example 6

Initial value problem.

In[115]:=

numerical_44.gif

Out[115]=

numerical_45.gif

Finding polynomial approximation for solution of the IVP.

In[116]:=

numerical_46.gif

Out[116]=

numerical_47.gif

Exact solution of the IVP.

In[117]:=

numerical_48.gif

Out[117]=

numerical_49.gif

Comparing exact and approximate results using Mathematica function Plot.

In[118]:=

numerical_50.gif

Out[118]=

numerical_51.gif