image of Pluckers conoid

Pluckers conoid



The Plucker's conoid is a ruled surface named after the German mathematician Julius Plucker. It is also called a cylindroid (a cylinder that has an elliptical cross-section) or conical wedge.

Object definitions


Mapping of Pluckers conoid
\{x\to v \cos (u),y\to v \sin (u),z\to a \sin (n u)\}
<math> <mrow> <mo>{</mo> <mrow> <mrow> <mi>x</mi> <semantics> <mo>&#8594;</mo> <annotation encoding='Mathematica'>&quot;\[Rule]&quot;</annotation> </semantics> <mrow> <mi>v</mi> <mo>&#8290;</mo> <mrow> <mi>cos</mi> <mo>&#8289;</mo> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> </mrow> <mo>,</mo> <mrow> <mi>y</mi> <semantics> <mo>&#8594;</mo> <annotation encoding='Mathematica'>&quot;\[Rule]&quot;</annotation> </semantics> <mrow> <mi>v</mi> <mo>&#8290;</mo> <mrow> <mi>sin</mi> <mo>&#8289;</mo> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> </mrow> <mo>,</mo> <mrow> <mi>z</mi> <semantics> <mo>&#8594;</mo> <annotation encoding='Mathematica'>&quot;\[Rule]&quot;</annotation> </semantics> <mrow> <mi>a</mi> <mo>&#8290;</mo> <mrow> <mi>sin</mi> <mo>&#8289;</mo> <mo>(</mo> <mrow> <mi>n</mi> <mo>&#8290;</mo> <mi>u</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mrow> </mrow> <mo>}</mo> </mrow> </math>
{x -> v*Cos[u], y -> v*Sin[u], z -> a*Sin[n*u]}
[x = v*cos(u), y = v*sin(u), z = a*sin(n*u)]


Constants of Pluckers conoid
<math> <mrow> <mo>{</mo> <mrow> <mi>a</mi> <mo>,</mo> <mi>n</mi> </mrow> <mo>}</mo> </mrow> </math>
{a, n}
[a, n]

Cite this as:

Surfaces: Pluckers conoid from Differential Geometry Library.

Terms of use:

You can use the contents of DG Library pages for education, research, professional needs and enjoyment.
If you use this library, please, cite DG Library as the source of the data.

Pages of DG Library may not be copied, mirrored, redistributed, printed, or reproduced in bulk without permission. Usage for any commercial purposes without permission is prohibited.

DG Library is database of over 580 objects for differential geometry and its applications. Read more...

  • Share via email
  • Share via Twitter
  • Share via Facebook