image of Tschirnhausen cubic

Tschirnhausen cubic

Plane Curves


Tschirnhaus's cubic is the negative pedal of a parabola with respect to the focus of the parabola. The caustic of Tschirnhaus's cubic where the radiant point is the pole is Neile's parabola.

Object definitions


Mapping of Tschirnhausen cubic
\left\{x\to a \left(1-3 t^2\right),y\to a t \left(3-t^2\right)\right\}
<math> <mrow> <mo>{</mo> <mrow> <mrow> <mi>x</mi> <semantics> <mo>&#8594;</mo> <annotation encoding='Mathematica'>&quot;\[Rule]&quot;</annotation> </semantics> <mrow> <mi>a</mi> <mo>&#8290;</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mrow> <mn>3</mn> <mo>&#8290;</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mrow> <mo>,</mo> <mrow> <mi>y</mi> <semantics> <mo>&#8594;</mo> <annotation encoding='Mathematica'>&quot;\[Rule]&quot;</annotation> </semantics> <mrow> <mi>a</mi> <mo>&#8290;</mo> <mi>t</mi> <mo>&#8290;</mo> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mo>-</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mrow> </mrow> <mo>}</mo> </mrow> </math>
{x -> a*(1 - 3*t^2), y -> a*t*(3 - t^2)}
[x = a*(1-3*t^2), y = a*t*(3-t^2)]


Constants of Tschirnhausen cubic
<math> <mrow> <mo>{</mo> <mi>a</mi> <mo>}</mo> </mrow> </math>

Cite this as:

Plane Curves: Tschirnhausen cubic from Differential Geometry Library.

Terms of use:

You can use the contents of DG Library pages for education, research, professional needs and enjoyment.
If you use this library, please, cite DG Library as the source of the data.

Pages of DG Library may not be copied, mirrored, redistributed, printed, or reproduced in bulk without permission. Usage for any commercial purposes without permission is prohibited.

DG Library is database of over 580 objects for differential geometry and its applications. Read more...

  • Share via email
  • Share via Twitter
  • Share via Facebook