image of Epitrochoid

Epitrochoid

Plane Curves

Description

An Epitrochoid is a plane curve generated by the motion of a fixed point on the radius or extension of the radius of a circle that rolls externally, without slipping, on a fixed circle. The epitrochoid is a generalization of the epicycloid. The Epitrochoid is a special case of the Limacon of Pascal with R = r.

Object definitions

Mapping

Mapping of Epitrochoid
\left\{x\to (a+b) \cos (t)-h \cos \left(\frac{t (a+b)}{b}\right),y\to (a+b) \sin (t)-h \sin \left(\frac{t (a+b)}{b}\right)\right\}
<math> <mrow> <mo>{</mo> <mrow> <mrow> <mi>x</mi> <semantics> <mo>&#8594;</mo> <annotation encoding='Mathematica'>&quot;\[Rule]&quot;</annotation> </semantics> <mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mo>&#8290;</mo> <mrow> <mi>cos</mi> <mo>&#8289;</mo> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mo>-</mo> <mrow> <mi>h</mi> <mo>&#8290;</mo> <mrow> <mi>cos</mi> <mo>&#8289;</mo> <mo>(</mo> <mfrac> <mrow> <mi>t</mi> <mo>&#8290;</mo> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </mfrac> <mo>)</mo> </mrow> </mrow> </mrow> </mrow> <mo>,</mo> <mrow> <mi>y</mi> <semantics> <mo>&#8594;</mo> <annotation encoding='Mathematica'>&quot;\[Rule]&quot;</annotation> </semantics> <mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mo>&#8290;</mo> <mrow> <mi>sin</mi> <mo>&#8289;</mo> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mo>-</mo> <mrow> <mi>h</mi> <mo>&#8290;</mo> <mrow> <mi>sin</mi> <mo>&#8289;</mo> <mo>(</mo> <mfrac> <mrow> <mi>t</mi> <mo>&#8290;</mo> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mi>b</mi> </mfrac> <mo>)</mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo>}</mo> </mrow> </math>
{x -> (a + b)*Cos[t] - h*Cos[((a + b)*t)/b], y -> (a + b)*Sin[t] - h*Sin[((a + b)*t)/b]}
[x = (a+b)*cos(t)-h*cos((a+b)*t/b), y = (a+b)*sin(t)-h*sin((a+b)*t/b)]

Constants

Constants of Epitrochoid
\{a,b,h\}
<math> <mrow> <mo>{</mo> <mrow> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>h</mi> </mrow> <mo>}</mo> </mrow> </math>
{a, b, h}
[a, b, h]

Cite this as:

Plane Curves: Epitrochoid from Differential Geometry Library. http://digi-area.com/DifferentialGeometryLibrary/PlaneCurves/Epitrochoid.php

Terms of use:

You can use the contents of DG Library pages for education, research, professional needs and enjoyment.
If you use this library, please, cite DG Library as the source of the data.

Pages of DG Library may not be copied, mirrored, redistributed, printed, or reproduced in bulk without permission. Usage for any commercial purposes without permission is prohibited.
 

DG Library is database of over 580 objects for differential geometry and its applications. Read more...

  • Share via email
  • Share via Twitter
  • Share via Facebook